skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Craig, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing an understanding of phenomena driven by the emergence of hadron mass (EHM) is one of the most challenging problems in the Standard Model. This discussion focuses on the impact of results on nucleon resonance (N*) electroexcitation amplitudes (or γvpN* electrocouplings) obtained from experiments during the 6 GeV era in Hall B at Jefferson Lab on understanding EHM. Analyzed using continuum Schwinger function methods (CSMs), these results have revealed new pathways for the elucidation of EHM. A good description of the Δ(1232)3/2+, N(1440)1/2+, and Δ(1600)3/2+ electrocouplings, achieved by CSM analyses that express a realistic dressed quark mass function, sheds light on the strong interaction dynamics underlying EHM. Extensions to N* studies for higher-mass states are outlined, as well as experimental results anticipated in the 12 GeV era at Jefferson Lab and those that would be enabled by a further increase in the beam energy to 22 GeV. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. The discovery of bioactive natural products is often challenged by the complexity of isolating and characterizing active compounds within diverse mixtures. Previously, we introduced a 1H NMR-based weighted gene correlation network analysis (WGCNA) approach to identify spectral features linked to growth inhibitory activity of Piper (Piperaceae) leaf extracts against model plant, fungal, and bacterial organisms. This method enabled us to prioritize specific spectral features linked to bioactivity, offering a targeted approach to natural product discovery. In this study, we validate the predictive capacity of the WGCNA by isolating the compounds responsible for the bioactivity-associated resonances and confirming their antifungal efficacy. Using growth inhibition assays, we verified that the isolated compounds, including three novel antifungal agents, exhibited significant bioactivity. Notably, one of these compounds contains a rare imidazolium heterocyclic motif, marking a new structural class in Piper. These findings substantiate the 1H NMR-based WGCNA as a reliable tool for identifying structural types associated with biological activity, streamlining the process of discovering bioactive natural products in complex extracts. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. Most bacteria are surrounded by a cell wall that contains peptidoglycan (PG), a large polymer composed of glycan strands held together by short peptide cross-links. There are two major types of cross-links, termed 4-3 and 3-3 based on the amino acids involved. 4-3 cross-links are created by penicillin-binding proteins, while 3-3 cross-links are created byL,D-transpeptidases (LDTs). In most bacteria, the predominant mode of cross-linking is 4-3, and these cross-links are essential for viability, while 3-3 cross-links comprise only a minor fraction and are not essential. However, in the opportunistic intestinal pathogenClostridioides difficile,about 70% of the cross-links are 3-3. We show here that 3-3 cross-links and LDTs are essential for viability inC. difficile. We also show thatC. difficilehas five LDTs, three with a YkuD catalytic domain as in all previously known LDTs and two with a VanW catalytic domain, whose function was until now unknown. The five LDTs exhibit extensive functional redundancy. VanW domain proteins are found in many gram-positive bacteria but scarce in other lineages. We tested seven non–C. difficileVanW domain proteins and confirmed LDT activity in three cases. In summary, our findings uncover a previously unrecognized family of PG cross-linking enzymes, assign a catalytic function to VanW domains, and demonstrate that 3-3 cross-linking is essential for viability inC. difficile, the first time this has been shown in any bacterial species. The essentiality of LDTs inC. difficilemakes them potential targets for antibiotics that killC. difficileselectively. 
    more » « less
  4. Abstract Unconditionally stable time stepping schemes are useful and often practically necessary for advancing parabolic operators in multi-scale systems. However, serious accuracy problems may emerge when taking time steps that far exceed the explicit stability limits. In our previous work, we compared the accuracy and performance of advancing parabolic operators in a thermodynamic MHD model using an implicit method and an explicit super time-stepping (STS) method. We found that while the STS method outperformed the implicit one with overall good results, it was not able to damp oscillatory behavior in the solution efficiently, hindering its practical use. In this follow-up work, we evaluate an easy-to-implement method for selecting a practical time step limit (PTL) for unconditionally stable schemes. This time step is used to ‘cycle’ the operator-split thermal conduction and viscosity parabolic operators. We test the new time step with both an implicit and STS scheme for accuracy, performance, and scaling. We find that, for our test cases here, the PTL dramatically improves the STS solution, matching or improving the solution of the original implicit scheme, while retaining most of its performance and scaling advantages. The PTL shows promise to allow more accurate use of unconditionally stable schemes for parabolic operators and reliable use of STS methods. 
    more » « less
  5. A novel meroterpenoid cabagranin D was isolated with related neolignans cabagranins A–C from the leaves ofPiper cabagranum(Costa Rica). Cabagranins A–C represent the first examples of 3,3′-neolignans isolated from the plant genusPiper, and the meroterpenoid cabagranin D displays an unprecedented Diels–Alder conjugate of an unsubstituted phenylpropenone and α-phellandrene. Details of the full structural elucidation of these compounds and a discussion of their potential biosynthetic relationships are presented. 
    more » « less
  6. Understanding the strong interaction dynamics that govern the emergence of hadron mass (EHM) represents a challenging open problem in the Standard Model. In this paper we describe new opportunities for gaining insight into EHM from results on nucleon resonance (N*) electroexcitation amplitudes (i.e., γvpN* electrocouplings) in the mass range up to 1.8 GeV for virtual photon four-momentum squared (i.e., photon virtualities Q2) up to 7.5 GeV2 available from exclusive meson electroproduction data acquired during the 6-GeV era of experiments at Jefferson Laboratory (JLab). These results, combined with achievements in the use of continuum Schwinger function methods (CSMs), offer new opportunities for charting the momentum dependence of the dressed quark mass from results on the Q2-evolution of the γvpN* electrocouplings. This mass function is one of the three pillars of EHM and its behavior expresses influences of the other two, viz. the running gluon mass and momentum-dependent effective charge. A successful description of the Δ(1232)3/2+ and N(1440)1/2+ electrocouplings has been achieved using CSMs with, in both cases, common momentum-dependent mass functions for the dressed quarks, for the gluons, and the same momentum-dependent strong coupling. The properties of these functions have been inferred from nonperturbative studies of QCD and confirmed, e.g., in the description of nucleon and pion elastic electromagnetic form factors. Parameter-free CSM predictions for the electrocouplings of the Δ(1600)3/2+ became available in 2019. The experimental results obtained in the first half of 2022 have confirmed the CSM predictions. We also discuss prospects for these studies during the 12-GeV era at JLab using the CLAS12 detector, with experiments that are currently in progress, and canvass the physics motivation for continued studies in this area with a possible increase of the JLab electron beam energy up to 22 GeV. Such an upgrade would finally enable mapping of the dressed quark mass over the full range of distances (i.e., quark momenta) where the dominant part of hadron mass and N* structure emerge in the transition from the strongly coupled to perturbative QCD regimes. 
    more » « less
  7. Abstract. Climatic extreme events are expected to occur more frequently in the future, increasing the likelihood of unprecedented climate extremes (UCEs) or record-breaking events. UCEs, such as extreme heatwaves and droughts, substantially affect ecosystem stability and carbon cycling by increasing plant mortality and delaying ecosystem recovery. Quantitative knowledge of such effects is limited due to the paucity of experiments focusing on extreme climatic events beyond the range of historical experience. Here, we present a road map of how dynamic vegetation demographic models (VDMs) can be used to investigate hypotheses surrounding ecosystem responses to one type of UCE: unprecedented droughts. As a result of nonlinear ecosystem responses to UCEs that are qualitatively different from responses to milder extremes, we consider both biomass loss and recovery rates over time by reporting a time-integrated carbon loss as a result of UCE, relative to the absence of drought. Additionally, we explore how unprecedented droughts in combination with increasing atmospheric CO2 and/or temperature may affect ecosystem stability and carbon cycling. We explored these questions using simulations of pre-drought and post-drought conditions at well-studied forest sites using well-tested models (ED2 and LPJ-GUESS). The severity and patterns of biomass losses differed substantially between models. For example, biomass loss could be sensitive to either drought duration or drought intensity depending on the model approach. This is due to the models having different, but also plausible, representations of processes and interactions, highlighting the complicated variability of UCE impacts that still need to be narrowed down in models. Elevated atmospheric CO2 concentrations (eCO2) alone did not completely buffer the ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings highlight the consequences of differences in process formulations and uncertainties in models, most notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic schemes, in projecting potential ecosystem responses to UCEs. We provide a summary of the current state and role of many model processes that give way to different underlying hypotheses of plant responses to UCEs, reflecting knowledge gaps which in future studies could be tested with targeted field experiments and an iterative modeling–experimental conceptual framework. 
    more » « less
  8. null (Ed.)